skip to content


The Department's buildings are currently open for wet laboratory work only. We have carried out a comprehensive COVID-19 risk assessment process and have introduced a number of new measures to ensure the safety of our staff, including reduced building occupancy, strict social distancing, 'family'-based working, and increased cleaning and hygiene regimes. All staff who can work remotely will do so for the foreseeable future. Please continue to contact us by email until further notice.

Department of Biochemistry


Microscope lasers

In recent work, we have used single-molecule imaging to show that the nucleosome remodelling and deacetylase (NuRD) complex exists as two sub-complexes that associate with each other (Zhang et al., 2016). We have also shown that NuRD forms clusters on chromatin within the nucleus at enhancer/promoter contact regions with specific transcription factors (Stevens et al., 2017). It is, however, unclear how NuRD regulates transcription at these enhancer/promoter contact regions.

Our current model is that NuRD acts by regulating the binding of transcription factors and/or mediator components and thereby enhancer/promoter contacts required for transcription. By taking advantage of NuRD-inducible cell lines, we are exploring how removing NuRD components affect the interactions of specific transcription factors and mediator components with chromatin, and their ability to form clusters. We are also exploring approaches to monitor transcription of NuRD-regulated genes in live ES cells and thereby determine if NuRD can affect transcriptional kinetics. This work exploits our on-going biochemical and structural studies of the purified complex.

For further details see:

  • Zhang W, Aubert A, Gomez de Segura JM, Karuppasamy M, Basu S, Murthy AS, Diamante A, Drury TA, Balmer J, Cramard J, Watson AA, Lando D, Lee SF, Palayret M, Kloet SL, Smits AH, Deery MJ, Vermeulen M, Hendrich B, Klenerman D, Schaffitzel C, Berger I, Laue ED. The Nucleosome Remodeling and Deacetylase Complex NuRD is built from preformed catalytically active sub-modules. Journal of Molecular Biology, 428(14): 2931-42 (2016), PMID:27117189
  • Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, Lee SF, Leeb M, Wohlfahrt KJ, Boucher W, O’Shaughnessy-Kirwan A, Cramard J, Faure AJ, Ralser M, Blanco E, Morey L, Sansó M, Palayret MGS, Lehner B, Di Croce L, Wutz A, Hendrich B, Klenerman D, Laue ED. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544: 59–64, doi:/10.1038/nature21429 (2017), PMID:28289288

Members of our group currently involved in this project are:

Wayne Boucher, David Lando, Aleksandra Jartseva and Wei Zhang

Contact Details

Ernest Laue
Professor of Structural Biology

Tel: +44 (0)1223 333677
Email: e.d.laue (at)


PA: Tessa Kretschmann

Tel: +44 (0)1223 766110
Email: edlsec (at)


Mailing address:

Department of Biochemistry
University of Cambridge
Old Addenbrookes Site
80 Tennis Court Road
Cambridge, CB2 1GA


Visiting address:

Sanger Building